This paper introduces the Knowledge-Guided Genetic Algorithm (KGGA), a hybrid metaheuristic that reimagines crossover as a form of genetic engineering rather than random recombination. By embedding knowledge-guided exploitation principles directly into the crossover operator, KGGA selectively amplifies high-quality genetic material, intensifying the search around promising regions of the solution space. Experimental results on a large scale DRC-FJSSP benchmark show that KGGA outperforms state-ofthe- art alternatives—including the Classic Genetic Algorithm (GA), Knowledge-Guided Fruit Fly Optimization Algorithm (KGFOA), and Hybrid Artificial Bee Colony Algorithm (HABCA)—consistently achieving superior solution quality.
Loading....